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Abstract—The thermal buckling analysis of antisymmetric angle-ply laminated cylindrical shells
that are simply supported and subjected to a uniform temperature rise is analyzed by a finite
element method based on the higher order displacement functions. Comparisons to the first order
displacement theory are made. Both theories allow transverse shear deformation, but only the higher
order one takes into account the transverse normal strain. The numerical results show that first
order theory overestimates the thermal buckling temperature of the shell panel, which suggests that
the higher order displacement fields should be used in the analysis of thermal buckling for a
laminated shell. Effects of important parameters are also studied.

NOMENCLATURE
ah length of the cylindrical panel along x and # dircctions, respectively
141, 18). (D], [F1. [G]. [L]. [A]  stiffness matrices of zero, first, -+, and sixth moments of the cylindrical pancl,
respectively
E.G, Young's moduli and shear moduli, respectively
h thickness of the cylindrical panel
{K,} geometrical stiffness matrix of the cylindrical pancl

K} structural stitfness matrix of the eylindrical pancl
N M, RT. ST theemal stress resultants of zero, first, second, and third moments, respectively

0.,.C, stiffness of the lamina

R radius of the cylindrival punel

T(%, 5) temperature distribution

[ ¥ matrix transpose

v strain encrgy

ut W displucement functions along x -0 -2 directions, respectively
u e w? displacement functions in the midplane
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perturbation quantitics to buckling configuration after the onset of buckling

thermal expansion coetlicients of the lamina along material principal directions

thermal expansion coefficients of the lamina under trunsformed coordinates x-y-2

strains along x-0-2 directions, respectively

total strain components

midplane strain components and vectors, respectively

generalized curvature vectors

generalized rotations

temperature rise, critical temperature rise and dimensionless critical temperature rise, respectively
ply angle.

INTRODUCTION

Thermal buckling analysis is important in the design of thin shell structures in super-
sonic flight vehicles or other applications where the operating environment may undergo a
temperature rise. Most of the existing papers deal only with mechanical in-plane load
buckling, but a few discuss thermal buckling but for laminated plates. As for the thermal
buckling problems of laminated shells the existing literature is rather meager. Hoff (1957)
analyzed the thermal buckling of a simply supported thin cylindrical shell, Zuk (1957)
investigated thermal buckling of clamped cylindrical shells using the Galerkin method, and
Abir and Nardo (1959), Hoff et al. (1964) and Ross et al. (1965, 1966) discussed similar
problems under different temperature environments. All of them are limited to isotropic
materials. However, Gupta and Wang (1973) and Radhamohan and Venkataramana (1975)
discussed thermal buckling of orthotropic shells with the effects of transverse thermal
expansion neglected.
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Zukas (1974) pointed out in the analysis of thermal deformation of laminates consisting
of pyrolytic graphite possessing a high ratio of transverse to in-plane thermal expansion
coefficients (x;/x,,) that the effect of transverse shear and normal strains should not be
neglected. In this paper we hence adopt a higher order displacement theory for the thermal
analysis of laminated cylindrical shell panels. With the higher order terms of displacements
along both the in-plane and the thickness direction. the transverse shear and the transverse
normal deformations are all allowed. Effects of the ratio of transverse to in-plane thermal
expansion coefficients are studied. and comparisons between the present high order theory
and Mindlin-Reissner first order theory are made. Other interesting parameters affecting
the critical temperatures, such as ply angle. ratio of transverse to in-plane moduli. number
of layers, boundary support conditions. etc.. are also investigated. and the results are
presented in this paper.

GOVERNING EQUATIONS

Displacement ficlds
Referring to Fig. A(a), consider a cylindrical shell panel with radius R, thickness 4,
longitudinal span a. and circumferential span . In order to tuke into account the transverse
shear and normal deformations, the following displacement ficld is assumed in the sequel :
= N+ (L2 (i
PN D F o, D+ 2 )
W )+ s (v )+ 2T (X, 0, (H
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i
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it

Unlike the first order Mindlin-type displacement field, the above displacement field avoids
the use of a shear correction factor.
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Fig. A. Geometrical configuration (a) and boundary support conditions (b) of the laminated

cylindrical shell panel. E,/E, =210, EJ/E, =17, E;=E:, G/E, =065, G/Es = 2.63?.

Giy= Gy viz= vy =021 vyy =033, 2y = =021, ay./29 = 22 = 160, Ey=1x10" psi,
' 1, =  x 10" *infin/ F,
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Strain-displacement relationships

Since buckling is a nonlinear phenomenon, the geometrically nonlinear strain—dis-
placement relationship is required to derive the associated governing equation. Such non-
linear strain—displacement relations for the cylindrical shells were provided by Novozhilov
(1953). and read:

ge= ((l+u )+ ) +0v ). T =1
£ = {(o,) + (L +rp, +w/r) 4wy, —v/r)} =1
&= {(u) + () +(1+w,)} =1
T = {Hu e ) Fo (Lo, +wir)+ (0 )0w,, —t/r)}]
A+ + @+ 000 [ )+ (e +w/r) + v, —/r) ]
oo = {0 + @ e+ 00 )T+ DI+ + () + (0 )7
x [(1,) + (e, ) + (1 +w,)]"?)
vor = () up/P)+ (W tva, +win)(e,)+ (L +w, )ov,, —2/r)}]
)+ + (w1 2 e )+ (L4, +w,) o+ (g, =0/ 2L ()
We then expand the above relations, drop terms with order higher than two, and neglect
part of the second order terms but reserve some appropriate ones by comparing their order
of magnitude as Stein (1986) did. For example. in the first relation of the above equation,
the second order term (u,)/2 can be neglected duce to the existence of u, but the terms
(r.)%/2 and (w,)?/2 cannot. Then the above nonlincar strain -displacement relations reduce
to the following:
£o=u o+ (e ) 2+ 00 )2
tn = (Ug/r) [24(C 0 +w)/r+ (0w /r =rv/r)’
6= (1) 2+ @,) 2+ w,
T = (e (E—vy—wir)+ (e Jwo/r+o/r)+ () (1 ~u,)
Vo = {=w u )+ ) e )+ )1 —u,)
Yoo = (a/ry(e )+ (V=vgfr—wir{(wafr—v/r) + (e, )1 —=w,). (3)
Substituting the displacement field, eqn (1), into the above equations, neglecting terms of

higher order product of = than 4 inclusive, and keeping the products of the larger rotational
quantities, w' and (w' —¢")/r, yields

eo= o+ +(00)2

o . -3 o 2 0 0y 2
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&g = "+ ot Ceet o+ PR L/ T IR
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b
Yoo = b g = e = Py — - oty +32°8,
r r r r r r

To =W A3 A wh oy + 2y,

1 ~ ' wh ,
0 c <. 0o = 40 b
; ty+ ; 'p_-.u + oottt -ll/().x + I Cu.t T W= = W_‘_". . (4)
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In this study, only R » : is considered. Under this assumption,
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r=R+:= R
dv = Rdf.
Thus. one can replace the (x.#.r) coordinates by (x. v.z) coordinates, and since R is a
constant, then
dx = dx

dy
dg =
R

dr =d-.

In the following. the (x. y. ;) system will be used. Under such a system and the assumption
R » =, eqn {4) is simplified and revised to read as

le} = 1"+ T+ 27y + 20 H (%)
where
el = ul + o)’
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Stress—strain relationships
The stress—strain relations for a unidirectional lamina in its principal material directions

{-2-3 are:

FJHH -Qu Qg Qi 0 0 0 1 fﬁu "QIAT\

012 Qi Q@ Q0 O 0 0 € — AT

Tu| Qv Qs € 0 0 0 J =247 - %)
O 0 0 0 [om 0 0 73z

O 0 0 0 0 Qs 0 713

| O | 3 Y 0 0 0 0 Qm‘ L 72 J

Referring to the x-y-2 coordinates, the above cquations can be transformed into

~0_\W FQH Gl.’! C)u 0 0 Qu‘q [ 5!“1“ATW
. @Gy U2 Q:.t Y 0 Q-za £, —a,,AT
“. O On Gu 0 0 Q. £, —a, AT
.| L0 0 0 O, 0. O ) Voo (®)
a.. 0o o 0 Qo Q& 0 Yo
on] [0k Ou G 0 0 Qu] |3.,-22,AT)
= [Q]({¢} - {2} AT)

The trunsformation between eqns (7) and (8) can be found in standard textbooks, such as
Vinson and Sierakowski {1986).

Toral potential energy

The total potential energy n is equal to the difference of total strain energy U and the
external work . In the thermal buckling problem, there is no external work W.Son = U,
and (s given as

{j - f %(0" \E\‘.\‘ + Gr &‘I"?)' ¥ + t‘)':.’63: + Gr:‘i‘?)‘: + Gt:fn‘. + Ul I':’Ti‘ v) d ;/’ (9)
Iz

where
&, =¢t,—a,AT,

&, = total strain,

a2, AT = thermalstrain.

Substituting egn (8) into the above equation yields

.
U= Z U], = 3 ({8)_{1}An1{6}k de

ko=t ka1 Jyy

— {2} AT [O) ({e} ~ {2} AT, d¥, (10)
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where subscript & denotes the kth layers of the laminated shell and # is the total number of
the layers. Substituting eqn (5) into eqn (10) and then integrating through thickness # yields

A B D F} (g%
1 B D F G ir!
v=3 f CYTBHE (D F o6 L) ) [ 49
F G L A {H}
INT}
f mn
DYfLf RS pp Yt S
- n{g VATBYHE ) (rTy (42 (D
L is™)
where 2 is the area of the middle plane of the shell and
(A,.B,.D)= % (L2500, ) ds
k=1Jdw
(F,.G,. L, A)=Y R ([ I
A=tdy
(INTHMTHRTYST) = X (0. 1dah(1,2,23,2)AT d: {12
k=l Y%

and z;, 2, denote the = coordinates of the upper and lower surfaces of the kth layer,
respectively.
Thermal stress analvsis

The thermal stresses and deformation before buckling can be analyzed by using the
principle of stationary total potential encrgy. Taking the first variation of the striin energy

U produces

0 B (')U B j‘ (G\\’Sgn' + (7‘.‘,51: vy + O‘::‘{‘(::: + g x':(),}',y: + d‘s:‘;}'\: +6w y‘;:l'n ) d ;‘ ( E 3)
s

Substituting eqn (5) into the above equation and integrating through the thickness yields

A B D F g"
1 . B D F G r
0=<5U=~J (SN ST Y ISAYISHY)C dQ
3 (t FERY nﬁ}w l)[] D F G L !5
F G L A H
Nt
M
“‘j (") [oTy (0B (0H1) | R [ 4@ (1)
0 e
where
A B D F
(€] = B D F G (15)
D F G L
F G L A
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Discretizing eqn (14). and using the appropriate shape functions [®] to denote
{e°}e = @) {d,o}.
{T}. = [®c){dr}.
{B} = [@4]{dy}.

{H}e = {Qﬂl{dh’}r (16)
where {dv}...... are element nodal displacements. one then obtains
N’
U= Y oU*
e=1
i {d)e"}
- oy ¥ f (@rederea)ic { 9 L e, | @)
= np [‘D#}
(4]
{NT}
~aay| ¥, [ wromogiom | VT an
{s7}
= {8d}([K){d} = {P}) (17)

where
N, = total number of elements discretized
U = strain energy of a single clement
superseript 7 denotes the matrix transpose.
Equating eqn (17) to zcro, the following matrix equation is obtained :
[K]id} = {P} (18)
where

(K]

Y [K,]. = stiffness matrix of the whole structure
[K.]. = stiffness matrix of a single element

)y =Y {d},
{dc“}e

1
= Z idri.
.41
‘(‘I/‘fr

{‘IH}r
= displacement vector of the nodal points of the system

{P} =Y {P}. =load vector.

Thermal buckling equations
According to the Euler method shown by Washizu (1986) or the adjacent equilibrium
method depicted by Brush and Almroth (1975), we add an infinitesimal perturbation along
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the bifurcation path to the equilibrium state at the bifurcation point due to thermal buckling.
Thus. we denote the oniginal state and the bifurcated state as

Ta €, ey,
and
o, +ok.e,+eh u, +uk, respectively,
where g%, ¢, w*are infinitesimal increments, and

e, +ek) = (0, +u®), + (g, +uly - (u+ud) (g +ud) . 9

Applying the principle of stationary total potential energy again:
HU+U*) = J (o, +a5)d(e,+c})dV = 0. (20)
.

Noticing that 3U = 0. the above equation can be reduced to the following form by neglecting
the higher order terms of 1} :

J (aroet +o,,uf)dV =0 (2h
.

where

PEMETTHdE S T TR T S Tt T {22
Equation (21) is the second variation of the total potential energy and represents the
general form of bifurcation equation. In the case of the current cylindrical shell panel, the

components of egn (22) are given as follows:

X o= uh e e wh

* * “K‘ * L) v !‘*
e, =%+ —R +u ulAw - k“ "T R W,
e = w4 kot
ly* [‘*
v o=tk — R S TR Tl S AT A Ty By OB N IS R TUE 3 F r,
roLoow w*
+ N = oWl — e n
R R R
MR T ST R TR Py Vot U TS TR TUE o A Sl S S A
- * “.* - w Ed * r* * v ’)‘%
PRI Tl S ey T SE Ve S TN R —u* R e L Lo S U TR TN o Wi g {23)

As pointed out by Brush and Almroth (1975), the product terms in the above equation can
be neglected since the prebuckling strains are usually much smaller than unity, thiseqn (23)
can be simplified as
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® _ %
gvx = u_t

] . W
g, =i+ R

eX =nt

r*

‘f:: = l‘: + \l’:. - _R—
YE = ut+wX
e = Wk (24)

Combining eqns (1) and (24), then substituting into eqn (21). and integrating through the
thickness 4. one obtains the following equation:

{e"}

- _ fRp0.11F *®/ *14 * 17 {r*}
ou* = | oy torpapyiansiie { U an
{H*}
owl wo

NN 8,77
+ 5[0 Y [-‘ -"] o UUrdQ=0. (25
J; é(w?, - E) N, N, ]|v & - z (25)

In the above equation, N, N.. N, are the thermal stress resultants right before the onset
of the buckling and are defined as:

L QH Qt: Qm QH
d: = j I3 Qll QZZ Q:b QI,‘

= ?u
i
N b

2

ol 3
~

-

le Q?.b QM Q}l}
e, —a AT
& —-a, AT &= (26
?n‘_za\'rAT N (~ )
£.—2.AT

where £,. &,, 7,.. and &, are the prebuckling strains, calculated based on the prebuckling
deformation found from cyn (18). Discretizing eqn (25} yields the following characteristic
equation :

((K)+AT[K)D{d} =0 (27
where
oy A NN,
wi= [ o] g T ]icrn @)
N T=3F1 N, 29
N‘?l‘ Nfi
and

SAS I7:i0-C
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( wly
?Wm_f =[Gl (30)
TR

Solution of eqn (27) gives the thermal buckling temperature AT, and the corresponding
mode shape {d}. In this study. a nine-node isoparametric element is adopted.

NUMERICAL EXAMPLES

Refer to Fig. A(b). where two sets of boundary conditions, simply supported and
clamped. are shown, and the shell panel is laminated as anti-symmetric angle-ply whose
geometrical configuration, as already shown in Fig. A(a). and the material constaats of
cach ply are given as follows:

[+0;—0;+0/—0/-]

# = ply angle

a = edge length

It = thickness

E\JEq =21, E,=10°psi
EVE, = LT, EJE, =17
GidEy =17, G lE, = 0.65
Gn/E, = 0.639

= 021 x10 “injin/ I

A, o=y = ox, = HY O

injing F (3
The above material constants will be applied to cach numerical example in the following
except that part of the material constants will be altered to investigate the sensitivity of
these moduli on the thermal buckling temperature and this will be pointed out at the
appropriate place. Numerical solutions of thermal buckling temperature, with the unit F,
are given in Tables | and 2 and Figs 1-8, which will be discussed below.

{1} Effect of transverse thermal expansion cocflicient: referring to Table |1, com-
parisons of the thermal buckling temperature by varying the ratios of «, to %, between the
current theory using displacement field, eqn (1), and the Mindlin-Reissner first order
displicement theory, the special case of eqn (1) without higher order terms of = than one,
are made. As can be observed in this table, the difference of buckling temperature predicted
by the two theories increases as the ratio of 2, to %, increases. Also, the discrepancy is
bigger in the case of two layers than six layers, which may be contributed to the larger
bending-extension coupling of the former than the latter. Thus it may be concluded that
in the case of a large transverse thermal expansion coceflicient compared to the in-plane
thermal expansion coefficient in the fiber direction, a higher order displacement ficld should
be used to obtain more accurate results.

(2) Effect of ply angle: Fig. la,b presents the relationships of the critical temperature
of thermal buckling versus ply angle 4 for the shell panel with layers 2, 4, and 6 under
simply-supported and clamped boundary conditions, respectively. As they show, the critical
temperature rises rapidly when the ply angle reaches 35 and obtains its maximum at about
40, and then drops drastically when the ply angle is greater than 45°. Additionally, there
is a focal maximum and minimum near ply angles 10 and 23 | respectively, in the case of
simply-supported boundary and layers 4 and 6. Table 2 then lists the ply angles where the
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Table 1. Comparisons of present and Mindlin theory for AT, ('F) for a six-layer simply-

supported laminated shell panel. [~45 .45 ], witha'h = 200.a b = 1. E, E, =21 E E, = 1.7,

E,=E. G E, =065 G:3/E,=0639.G,=G.v;2=v,;=021,v;; =033 1, = -0.2L
2.2 = 2, %y = 160, E, = 1 x10°psi, 2, = 1x10 *inin F

No. of Critical temp. (A) Critical temp. (B) Difference
layers N (Mindlin) (Present) (A-B)/B (%)

2 1.00 576.24 547.10 532
5.00 427.00 389.37 9.66

10.00 322.66 286.26 12.72

20.00 217.21 187.30 15.97

30.00 163.90 139.43 17.55

40.00 131.82 111.17 18.57

50.00 110.31 92.59 19.14

75.00 78.66 65.49 20.13

100.00 61.33 50.88 20.54

6 1.00 768.11 762.11 0.79
5.00 568.87 547.85 384

10.00 429.79 405.37 6.02

20.00 288.96 266.88 §.27

30.00 217.88 199.13 9.41

40.00 175.01 159.02 10.06

50.00 146.35 13243 10.51

75.00 104.06 132.43 .14

100.00 80.94 72.62 [1.45

Table 2. Ply angles corresponding to maximum critical temperatures

for various numbers of layers and boundary supported conditions,

antisymmetric angle-ply laminated shell pancl, [( +0/ 0" )], a/h =

200, ab=1 EJE, =2, EJE,=17, E,=F, G E, =005

Go/Ey=0.639, G, =Gy vip=v, =021, v,, =033, 1, = -021,
22y = A2y = 16,0, Ey o= 108 psi, 2, = 10 "inging F

Simply-supported Clamped
No. of layers Angle AT, Angle AT
2 41.5° 794.42 425 616.59
4 41.5 989,12 425 803.76
6 41.5 1014.84 425 831.88

maximum critical temperatures occur for the simply supported and clamped boundary
conditions as well as various number of layers, respectively.

(3) Effect of modulus ratio of £, to E,: Fig. 2a,b depicts the effect of £,/E,. As can
be seen, the critical temperatures for various numbers of layers come closer and closer as
the ratio of E,/E, varies from large to unity, which means that the bending-extension

3000 12000
CRITICAL TEMP °F
coco 3000 12000

CRITICAL TEMP °F
$000

1000

90 130 300 430 0 730 900 00 130 100 450 23 150 w0
PLY ANGLE PLY ANGLE
(q) simply-supported (b) clamped

Fig. 1. Effect of ply angle on critical temperature of thermal buckling. (a) Simply-supported.
(b) Clamped.
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ES 24
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= e 2o
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° >
31 21
> o
4 S
99 132 290 380 <23 s00 20 o B2 187 <80 <7
E,/E, ratic €,/E; ratio
(a) stmply-suppor ted {b) clamped

Fig. 2. Effect of modulus ratio £,/£, on critical temperature of thermal buckling. (a) Simply-

supported. (b) Clamped. E.E,=1.7. E.=E,. G, ,/E,=0.65 G../E; =063, G,.=G,..

vip=v, =020 vy =033, 2, = =021, 2. %0 = 20% = 160, E, = 1 x 10" psi, x, = [ x [0 ®
m/in/"F.

coupling is also getting smaller. Since in the case of a two-layer panel, the effect of bending
extension is the largest, therefore its critical temperature is smaller than those of four-layer
and six-layer pancls with the thickness unchanged.

(4) Effect of radius of curvature: Fig. 3a.b shows the etfect of the ratio of thickness 4
to radius of curvature R. As illustrated in the figure, the larger the value of A, R, the higher
the critical temperature, which means the larger curvature may stabilize the structure, as
cxpected.

(5) Effect of span ratio a/h: Fig. 4a.b presents the relationships of the critical tem-
perature versus span ratio ¢/b. As observed, the ceritical temperature reaches a maximum
and then drop as ¢/h varies from small to large. The ripples in the curves of the figures are
attributed to the change of buckling modes, which are illustrated in Figs 3a tand 6a . By
comparing Figs 5 and 6 1t can be concluded that more mode jumping occurs in the case of
a simply-supported boundary than a clamped boundary.

(6) Effect of boundary conditions: Fig. 7 comparces the effect of different boundary
conditions on the critical temperature under various vadues of 2/R. Although a clamped
boundary usually stiffens the panel, and hence increases the critical temperature of thermal
buckling, in contrast to the simply-supported panel at the same level of temperature, the
same boundary condition also raiscs the thermal stresses in the panel, which tends to

190 ¢

— NzG
a2l N:=& ;{
@ 8 --= Nz2 o
a
g, b
w24 W o
- L)
] X
g o g (2]
-3 i
2 = -
S o
3 3
° o
° T v N v 2 v v - v .
299 o e 04 98 19 30 01 Q- 16 an ‘3
h/R ratio(x €-3) h/R ratio(x E-3)
(@) stmply-supported (b) clamped

Fig. 3. Effect of radius of curvature R on critical temperature of thermal buckling, (a) Simply-

supported. (b) Clamped. E\/E, =21.0, E/E, =17, E, = E;,. G,,/E, =065, G, E, = 0.639,

=G via=v,, =021 vy, =033, 2, = =021 2,02, = 2072, = 160, E, = 1 x10° psi,
1, = 1 x 10" %in/in: F.
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° °
3 3
2 S
o o
2 -
: R
'S H
g 33
4 w
,Eg -
-
3 <
Yo Lo
- 34 - 34
-—— —e
x
S S
=3 N o
21 21
27 2
o o
4 ot S+—— T
90 10 20 30 40 S0 €0 O 80O 00 10 20 30 40 SO0 €0 70 80
a/b mtio a/b ratio
(g) simply-supported (b) clamped

Fig. 4. Effect of aspect ratio a/b on critical temperature. (a) Simply-supported. (b) Clamped.
EVE,=210,E/E,= LT, Ey=E;. G 2/E; =065, G3/Ey = 0.639, Gy =Gy, vy = vy =020,

vy =033, 1, = —0.21, 2,3/ = %33/, = 16.0, E; = | x 10° psi, 2, = | x 10~ % in/in/°F.

decrease the buckling temperature as compared to the case of the simply-supported bound-
arics. Thus as can be seen from the figure, there do exist values of A/ R where the critical
temperatures for both clamped and simply-supported boundaries are nearly the same.

(7) Critical temperature versus various ratios of £,/E;: Fig. 8a—c depicts the relation-
ships of the critical temperatures versus ply angle under E,/E, = 3, 10, and 50, respectively.
As illustrated in this figurc, the ply angle corresponding to the maximum critical temperature
movces from about 30” to 45”; in addition, the mode interaction becomes more pronounced
as E,|/E, increases.
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Fig. 5. Effect of various aspect ratios a/b on mode shape of thermal buckling for simply-supported
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CONCLUDING REMARKS

The thermal buckling ol an antisymmetric angle ply laninated cylindrical shell pancl
subject to a uniform temperature ficld has been investigated. Appreciable errors may occur
if a low order displacement ficld is used instead of a higher order one. Increase of curvature,
number of layers with thickness fixed. and ratio of £,/E, with £, tixed always raise the
critical temperature of thermal buckling. As the ratio of £,/ £, varies from 3 to 50, the ply
angle, where maximum critical temperature occurs, moves from near 30 to 45 . The ratio
of the span «/b changes the buckling modes. which in turn affects the critical temperature,
and such a phenomenon is more pronounced for the case of simply-supported boundaries
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Fig. 7. Gffect of boundary condition on critical temperature of thermal buckling.
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Fig. 8. Comparison of effect of modulus ratio £, £, on critical temperature of thermal buckling of
the shell panel.

than clamped edges. Finally, although clamped boundaries increase the stiffness of the
pancl. compared to the simply-supported case, the thermal stresses are also raised. which
tends to tower the critical temperature, such that in some cases the critical temperatures of
the shell panel with clamped edges and simply-supported edges are nearly the same.
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